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Abstract—In this paper the probiem of an infinite elastic beam or a plate containing a crack is considered.
The medium is loaded transversely through a stamp which may be rigid or elastic. The problem is a coupled
crack-contact problem which cannot be solved by treating the crack and contact problems separately and
by using a superposition technique. First the Green's functions for the general case are obtained. Then the
integral equations for a cracked infinite strip loaded by a frictioniess stamp are obtained. With the question
of fracture in mind, the primary interest in the paper has been in calculating the stress intensity factors. The
resuits are given for a rigid flat stamp with sharp edges and for an elastic curved stamp. The effect of
friction at the supports on the stress intensity factors is also studied and a numerical example is given.

1. INTRODUCTION

In this paper we consider the problem for a beam or a plate which contains a crack
perpendicular to its boundaries and which is subjected to a symmetric transverse loading. The
specific problem of interest is that of a beam supported at two points and loaded transversely
through a rigid or an elastic stamp (see Fig. 1). The problem differs from the standard cracked
strip problem considered, e.g. in {1-7] in that it is a coupled crack-contact problem in which
the distribution of the transverse loads is not known and is dependent on the geometry of
the crack as well as that of the stamp. Therefore, the routine superposition technique of
calculating the crack surface tractions from the uncracked strip and using them to solve a
perturbation problem in the cracked strip is not applicable.

In solving the beam problems another point of practical interest is the estimation of the effect
of friction which may exist at the supports. This effect may be taken into consideration in
formulating the problem by simply assuming that on the boundaries the tangential as well as the
normal tractions are prescribed.

The solution of the problem is given for two stamp geometries, namely a rigid fiat-ended
stamp with sharp corners and a curved elastic stamp. Without the support friction and for small
contact area under the stamp, the problem reduces to the three point bending problem for a
beam which is considered in[5].

Fig. 1. An elastic strip containing a crack which is loaded through a stamp.

tThis work was supported by NASA-Langley under the Grant NGR 39-007-011 and by NSF under the Grant ENG
77-19127.
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2. INTEGRAL EQUATIONS OF THE PROBLEM

Consider the plane elasticity problem for an infinite strip shown in Fig. 2. Let x=0 be a
plane of symmetry. In addition to the tractions

ayy(x, 0)= — p&(x — xo) ~ p&(x + Xo),

Try(x, 0) = q8(x — Xo) = q8(x + Xo),

ayy(x, )=~ P8(x — d)— P8(x + d),

Ory(x, h) = Q8(x — d) - Q(x + d), (la—d)

let the strip contain an “‘edge dislocation” given by
<
ZuON=foy =y 0<y<h @

where u is the x component of the displacement vector. The solution of the problem under the
“external loads” (1) and (2) would provide the necessary Green's functions to express the
integral equations of a relatively general crack-contact problem in which there may be any
number of cracks on the x =0 plane and any number of stamps along the y=0 and y=h
planes. Since the. formulation of the problem is quite stsaightforwazd, in this paper most of the
details regarding the derivation will be omitted. The dispiacement field in the strip may be
expressed by the following Fourier integrals (see, e.g. (4, 8])

u(x,Y)=%L {%(f.-i-'(;lgﬁaygz)sinhay

-1 <f2+5-;—l-gz+ aygy) cosh ay} sin ax da

a
+5= [ A® (55 +18x) et g,

o(x, y)= --—f{ fz———gz+ayg.)smhay

= (fn -5—;--13. + aygg) cosh ay} cos ax da
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Fig. 2. External loads acting on the elastic strip.
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where the functions fi(a), fo(a), gi{a), ga) and A(B) are unknown. Equations (3) satisfy the
symmetry condition given by

(0,9)=0, O<y<h 4

The five unknown functions which appear in (3) can be determined by using the five conditions
given by (1) and (2). Using the stress-displacement relations, from (1)~(3) we obtain

=t _fe-
A(p)_i(]+K)Bfe "’0’

Hla)= 1 {~[ah + cosh ah sinh ah)A, - a*h®A, + [sinh ah
D(a)

+ ah cosh ah)A; ~ ah sinh ahAy},
f?(a) = Alr

ala) = TJ("IT-B {[ah + cosh ah sinh ah]A, + sinh? ah A, [sinh ah

+ ah cosh ahlA; + ah sinh ah Ay},

@) = E('IT.T) —sinh® ah A, + [ah — cosh ah sinh ah]A,+ ah sinh ek As

+ [sinh ah — ah cosh ahlAd}, (5a-¢)
D(a) = sinh? ah — a2h?, ()

1 1 .
Al=-2;p cos axo+mfyoae ®,

1. 1 .
Az=-2-‘;q sin axo—mf(l ~ayp) e ™,

1

A3=2F

1 —alh~
Pcosad—mfa(h“yo)e -y,

Av= 3, Qsinad — 13 11 - ath = yol e, (Tad)

where p is the shear modulus and x =3-~4» for plane strain (i.e. for plates) and x =
(3= v)I(1 + ) for plane stress (i.e. for beams), » being the Poisson’s ratio.

Now, let us assume that the strip contains cracks along a portion L of the x = 0 plane and is
loaded by stamps on the boundaries y=0 and y=h, M, and M, corresponding to the
respective contact areas. This means that o, is prescribed on L and generally the displace-
ments 4 and v are prescribed on Mo and M;. Then, substituting from (5)~(7) into (3) and using
the appropriate stress-displacement relation we could obtain a system of five integral equations
for the unknown functions f(x), g(x), p(x), P(x) and Q(x). However, in order to simplify the
problem, in this paper it will be assumed that at y = k the tractions P(x) and Q(x) rather than
the displacements 4 and v are prescribed and the tractions p and g are not independent. That
is, either the stamps acting on y = 0 are frictionless, (i.e. g = 0) or the coefficient of friction on
the contact area is constant. Therefore, the problem has only two unknown functions, f(y) and
p(x), with o, and v being prescribed on L and M,, respectively.

To complete the formulation of the problem, the contribution of the elastic stamp has to be
incorporated into the integral equations. Considering only the curved elastic stamps which are
in “smooth™ contact with the strip and assuming that they have relatively large local radii of
curvature, the local displacements in the stamps in the neighborhood of the contact area may be
approximated by the standard half plane solution{9]. Referring to, for example[8], under the
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tractions p(x) and g(x), the derivative of the normal displacement in the stamp may be
expressed as

3 e k=1 I +i [ plxg 8
ax D,(x, 0)‘" 4#’ Q(I) s 4“’ M,xo“x dXo, ( )

where the subscript s refers to the quantities in the stamp. The integral equation giving the
contact pressure p may then be obtained from

3 =v=3
= [0(x, +0)= 3,(%, ~0)] = V(2) = I 0ox) ©

where vo(x) describes the profile of the stamp.
Expressing now o(0, y) and (3/9x)v(x, +0) in terms of the unknown functions p, ¢, and f
and using (8) and (9), after somewhat lengthy but straightforward analysis, we obtain

g+ [ Earrp, | tx 0pe) -kitx a0l de
My My

dxt’?
+B: [ Ihix, 0PI~ ks, DQI dt + s [ 0 [~

+hinn|dr=mgV,  x€ M, (10)
1 . k+1 s
[ o[k ko] an+ 52 0.0+ ki, 000

+ ', 0+ ety Dla@har + 55 [ (g0, 0+ by, 01P(0)
# S,

+ ki O+ kuy, DIQONE =5 o0.). v e L an
where
b= gﬁ' :g:': 3'; b5 :§2+J?f+ e’
B T Tt T 1

the kemels &,,...,k, are bounded in their respective closed intervals and are given in
Appendix A and k'(y,t), (i=6,...,10) represents the part of the kernel which becomes
unbounded as y and ¢ go to an end point y =0 or y = k simultaneously. Separation of these
singular kernels is essential for an accurate treatment of the edge cracks. The kernels k and &*
are separated through the asymptotic analysis of the infinite integrals giving the sum of the two.
For example, in ks’ + k¢ the first term in these integrals reads as

_ [ &t +dah—e ot
H'(y’n_Lc“-—»da’hr—-Z«l-c""' tae™™ sinh ay da. (13)

By adding and subtracting the asymptotic value of the integrand under the integral sign and
evaluating the asymptotic integral, (13) may be expressed as follows:

Hn()’.t}=§[ l L ]+

- I'h’h2+4ah 42~ Qe 2ak
-y’ @+yy

o —dathl—3 e tae™™ sinh ay da. (14)

o
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After evaluating all such terms and combining we obtain

ke (3, )= — —) 6y 4y’ 1 6(h - y)
PO Ty Ty TGy 1—@h-y) [1-Ch- P
__Mh—y 2 4h+y-t 12h(h-1)+4hy  24hy(h-1) 1s)
[t-Qh-y) 2h-t+y (h—-t+y)} (h-t+y} ~Qh-t+y)*
, 2_ 42
k=~ o+ T, 16)
2
W0 0= -t (17)
o o _—h=y)  (h=yI(h=y}-1]
k9 (y1 t)'“(h_y)2+t2+ [(h_y)f+ tZ]T s (18)
: 2 Ah-y)t
klo(y’t)-(h_y)2+t2 [(h‘Y)2+12]2. (19)

In deriving the integral eqns (10) and (11) and the expressions for the kernels given in
Appendix A, the following symmetry conditions have been used: The contact areas M, and M,
are symmetric with respect to x =0 plane, p(x), P(x) and vo(x) are even functions of x, and
q(x) and Q(x) are odd functions of x. The static equilibrium of the strip requires that

IM, p(x)dx = fu,, P(x)dx. (20

Also, referring to the definition of the density function f(t) given by (2), it is clear that, for
example, for an imbedded crack along (x =0, 0<b <y <c <h) f must satisfy the following
single-valuedness condition:

f: f(tydt =0. @1

Thekernelsk;, . . ., kjo which appear in the integral egns (10) and (11) are technically bounded in
the respective closed domains of definition of their arguments and hence may be evaluated
numerically without any difficulty. In this problem a Gauss-Legendre quadrature formula is
used to evaluate the related infinite integrals. However, since the integrands have a singularity
at a =0, considered individually most of these integrals are divergent. Expanding the in-
tegrands around a =0, the divergent part of the integrals can be separated. By using the
equilibrium condition (20), it can then be shown that the sum of the divergent parts of the

kernels is zero. Even though somewhat lengthy, this procedure is necessary for the accurate
evaluation of the kernels.

3. SOLUTION FOR A RIGID FLAT STAMP

Let the beam or the plate have frictionless simple supports at x=Fd, y = h and be loaded
through a frictionless rigid flat stamp of width 2a having sharp corners at x= ¥ a. Assume that a
through crack is located on x =0, b <y <c. For this problem the integral eqns (10) and (11)
are valid with

q(x)=0, Qx)=0, P(x)=Pd(x—-d)+Pé(x+d), V(x)=0;
L= (b0 C)’ Mo = (—aa a)9 o'xx(oa y) =0, b <y < C,

- =4
BZ" lv ﬂS 1+K’ (22)

SS Vol. 15, No. 12--D
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where P is the load at the supports x= % d per unit thickness. After normalizing the intervals
(b, ¢) and (~—a, a) through the transformations

x=arn, t=as, {(—a<t<a), y=c;bfz+c;b, l-‘-c;bh"'c;ﬁ, b<t<c),

(23)

the singular integral eqns (10) and (11) may be solved numerically by using the Gauss-
Chebyshev integration formulas{10). Noting that the index of both equations is +1, the solution
may be expressed as

%%=f.<sa=ﬂ(s,x:~s.’)‘"‘, 24)

BalD) - ro0 = Fisa1 - s @s)
Also, from (10), (11) and (22) observing that

[ b e = o, 4k, ~hP =5 [ ez ok, ~dlp) 8t 29

[t klPaydr =3 [ to'ts, )+ ko', —d) + bk, )+ ks, ~Dlp ), 2)
the integral equations (10) and (11) may be expressed as follows:
2
L 2, klr, s)f(s)ds =0, i=12,-1<r<lL (28

In (28) since all variables are defined in the same interval (—1, 1), the subscripts in 7 and s have
been deleted. The integral equations must be solved under the conditions

[ serds=1, [ rsas=o (9.b)

'g‘}!: !;z:t;m of singular integral equations (28) are solved aumerically by replacing (28) and (29)
V{102

g; ki(rm s)F(s) W =gi(rw), i=1,2; m=1,...,n-1, (30)
S whe =1 E Wik =0 (31a,b)
where
3¢=cos(-§%%-n-), k=1,....n, r,..=cos(-2§£:—:-1211r), m=1,...,n-1,
W,=W,.=2(n’:n, We=—"=, k=2,....n-1 32
Equations (30) and (31) give unknowns Fi(s,), j=1,2; k=1,...,n

With the fracture of the beam or plate in mind, in the problems considered in this paper, the
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main interest is the evaluation of the stress intensity factors which are defined by

K(b) = lim [2b ~ y)} "0, y) = lim 20y - B 72 ),
y—b y-+b K

KO = lm 2y - 1% 00, )=~ lim(2c - PP fy). (33,

y=c b4
Referring to (25), after solving the integral equations k(b) and k(c) may be evaluated from

k(b) = (2Pla) Vl(c — b)[2) Fx(-1),
k(c)=—-(QPla) /{(c — b)/2]) Fx1). (34a,b)

When ¢ = h, the crack becomes an edge crack. In this case the singular behavior of the
solution was discussed in detail in[4]). Here it is sufficient to mention that the generalized
Cauchy kernel found in this paper is identical to that of [4]. The numerical solution is carried
out by letting ¢ = h and again using eqns (30)-(32). Needless to say, in this case the condition
(29b) and hence the eqn (31b) is not valid. Also, at the end point y = c = h the power of
singularity of the density function f(y) is zero (rather than —(1/2)), that is f(h) is finite. Thus,
f(y) may still be defined by (25) and (30)~(32) may still be used to solve the problem provided
(31b) is replaced by

F{1)=0. (35)

The numerical resuits found for a cracked beam or plate loaded by a flat-ended rigid stamp
are shown in Tables 1-5. The tables give the normalized stress intensity factors defined by

k

k* = et
@PIR)/(k = b)

for the edge crack,

ko for the internal crack.

k
= @PIRWVi(c- D))

Table 1 shows the edge crack results for the stamp width a/h =0.01 which essentially
corresponds to the three point loading problem. The table also shows the results given in[5)
obtained for the three point loading problem by the method of boundary collocation. It may be
seen that the agreement is quite good.

As the width of the rigid stamp 2a is increased, physically it would be expected that because
of the “bending” of the strip the contact pressure at x =0, y = 0 would decrease and eventually
the surfaces would separate. This may be observed from Tables 2 and 3 and Figs. 3 and 4.
Figures 3 and 4 show the distribution of the normalized pressure p(x)/(2P/a). Both figures refer

Table 1. Stress intensity factor in a strip with an
edge crack and loaded by a rigid flat stamp. a/k =
0.01, k*(b): present results, k*(b): Ref.[5]

dih=2 dh=4
(h~b)h k*b) k*b) Kk*b) k%b)

0.01 6345 6434 13.00 13.09
0.10 5883 5910 1217 1219
0.20 5867 5882 1220 12.22
0.30 6243 6255 1299 13.01
040 7041 7042 1461 1460
0.50 8448 8467 1744 1746
060 1092 1096 2242 2245
070 1577 2.1

080 2740 55.51
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Table 2. Effect of the stamp width 2a on the stress intensity factor in a strip with
an edge crack. dlh =2, (h—b)/h =0.1

alh 001 0.05 010 015 020 025 0.30 0.35
k*b) 5883 5876 5856 5819 5762 5681 5570 separat.

Table 4. Stress intensity factors in a
strip with a central crack. a/h =0.01,
dlh=4,c+b=h, ko= kllQ2Ph)
V(e -b)2)]

Table 3. Stress intensity factor vs. the

crack length for an edge crack. a/h =0.2, (c~b)h ko(b) kolc)
dlh=4.0
0.1 —0.28763 0.78919
th-b)h 001 0.10 0.20 0.2 -0.82050 1.3365
k*(b) 1284 12.03  separation 0.3 -1.3540 1.8954
0.4 -1.8975 2.4780
0.5 -24714 3.1095
0.6 =317 3.8405
0.7 -3.9294 4782
0.8 -5.1552 6.2281
0.9 ~7.8157 9.3547

095  -11.6675 13.7382

to the case of edge crack. Figure 3 gives the pressure distribution for a fixed crack length and
for selected values of the stamp width 2a. It is seen that as a/h increases the pressure in the
mid portion of the contact area decreases, and at approximately a/h = 0.315, p(0) becomes zero.
Upon further increasing a/h the analysis gives negative pressure around x = 0. Since this is not
possible separation would have to take place along the contact area. Similar results may be
observed in Fig. 4 where the pressure distribution for a fixed stamp width and variable crack
length is given. Here the separation begins approximately at (h — b)/h =0.15. These results
indicate that for a given crack length and stamp widths greater than a certain critical value or
for a given stamp width and crack lengths greater than a certain value the solution as outlined in
this paper would not be applicable. This is a typical “receding contact” problem in which the
contact area is not known. However, our unpublished results in connection with the problem
described in{13]t shows that in this case the contact area would be confined near the ends of
the stamp and a very good approximation to the solution may be obtained from eqn (11) by
replacing the contact pressure p by two concentrated loads P6(x — a) and P8(x + a).

The values of the stress intensity factor corresponding to Figs. 3 and 4 are given in Tables 2
and 3.

The resuits. for.an.intemmal erack (0 <-b <y < ¢ < h).are shown-in Tables 4-and 5. Table 4
shows the stress intensity factor ratio k, for a symmetrically located crack, i.e. for (¢ + b)[2 =
hi2. Here the crack tip y=b5b is in the compression region, hence k(b)<0. Of course,
considered separately these results are meaningless. However, the results can be used if the
strip is also under a sufficiently large axial load so that in the combined bending-membrane

Table 5. Stress intensity factors for an eccentric-
ally located crack. alh =001, c +b =342, ky=
2Pk ((c - b)I2)]

dih=2 dlh=4
(c-bllk  keb) kolc) ko(b)  kolc)

005 26122 28784 54749 6.0423
010 25167 3.0562 52663 6.4155
020 23986 3.5429 4.9947 7.4265
030 24018 43492 49681 9.0895
040 26470 6.1001 54362 12.6981

1The plane problem for an elastic strip supported by two elastic quarter planes and subjected to transverse loads. In
this problem, upon separation, the contact area recedes towards the ends of the stamp and the solution becomes
indistinguishable from the concentrated load solution.



A cracked beam or plate transversely loaded by a stamp

s e
— 2d .
L | ]
“ .
Y.
54— h
(=)
o
4
pix)
2P/a
I
2k
' e
T ] ! A 1
0 05 1.0
L x/a

Fig. 3. Normalized pressure distribution under a flat rigid stamp with sharp edges in a strip with an edge
crack of length h~b. (k- b)/h =0.1, support spacing =2d = 4k, stamp width =24, total compressive
force = 2P.
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Fig. 4. Normalized pressure distribution under a flat rigid stamp with sharp edges in a strip with an edge
crack. a/k =0.2, d/h = 4, total force 2P.
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solution k(b) becomes positive or zero. Then the results given in Table 4 would be quite useful.
Note that in this problem |k(b)| # |k(c)|, whereas under pure bending one has k(b)=—k(c).
Table 5 shows some sample results for an eccentrically located crack.

4. ELASTIC STAMP
Let the strip again be supported at x=+d, y =h and be loaded through a curved elastic
stamp with a local radius of curvature R. If R is large in comparison with the contact length 2a,
then the input function V appearing in (10) may be expressed by

Vix)=~%. (36)
The system of singular integral equation are again valid with
q(x)=0, Qx)=0, P(x)=Pd(x~-d)+Pbx+d);
L=(bc), My=(-a,a), 0u(0,y)=0, b<y<c;
[rwae=o0, [ pwyar=2r 37

Using the transformation (23) and defining

ﬁ% = gy(51), 5% = gz(sé), (38)

the integral equations can be expressed in the following form
12
f & hy(r, s)g(s)ds = vi(r), —1<r<l, v(r)=—mr, vAr)=0, i=12, (39)
subject to the conditions
1 R 1
f gis)ds =—=—2P = A, f 2As)ds =0. (40a, b)
-1 Bha -1

In this problem the contact width 2a is unknown. The integral equations (39) are solved by
assuming that a is known. After determining g.(s) for a given a, the corresponding load P is
then-determinet! from (40a). The numerical sofution is obtained by letting

&1(s) = Gy(sX1 =)', gAs) = GosX1 -5 (41a,b)

and using the Gauss-Chebyshev integration formulas([10]). The stress intensity factors are then
obtained from

k(b) =5 GA-IVI(e = b)2l, K(c)=~% GADVI(c-b)2) (42a,b)

The calculated resuits obtained for the loading by a curved stamp are summarized in Table
6. The resuits are given for three values of 8,, namely 8,, namely 8, = 1, 8, = 0.5and 8, = § X 10~ which
correspond respectively to a rigid stamp, a stamp having the same elastic constants as that of
the strip, and a stamp with a shear modulus which is much lower than that of the strip. The
difference in these three sets of resuits lies mainly in the value of A as defined by (40a). Note
that in terms of A and k* the actual stress intensity factor is given as

2
k(b) = 45 Bsk*(BIA V/(h = b). “3)
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Table 6. Stress intensity factors in an
infinite strip with an edge crack loaded
through an elastic curved stamp. d/k =4

(h=b)k alh k%b) 10°ra%/K?

B=10

0.1 0.01 1217 1.567
0.1 003 1217 13.87
0.1 0.05 1217 .25
0.1 0.10 1216 129.2
0.1 0.15 1214 2383
0.5 001 17.44 1.549
0.5 003 1744 12.54
0.5 005 1744 29.02
0.7 001 32.11 1.469

=05

0.1 001 1217 1.569
0.1 003 1217 14.00
0.1 0.10 1216 1418
0.1 020 1212 4403
0.5 003 1744 13.29
0.5 005 17.44 33.38
0.5 0.10 1742 9281
0.5 020 1734 1759
0.7 003 3211 10.80
0.7 005 3209 a7
0.7 0.10 3203 37.07

Br=5.0x10"°

0.1 010 1216 157
0.1 050 11.88 392
0.1 10 1127 15,690
0.5 010 1742 157.1
0.5 050 1694 3923
0.5 1.0 1605 15,660

5. THE EFFECT OF FRICTION AT THE SUPPORTS

If the beam or the plate is loaded as described in Fig. 1 and if there is friction at the
supports, then the axial load Q would not be zero and may tend to increase the stress iatensity
factor. Or, in general, the strip may be subjected to axial surface loads Q not necessarily at the
supports. Assuming that P and Q are known, the integral equations (10) and (11) can be solved
and the effect of Q can be evaluated. As an example, in this paper it is assumed that Q is a
known concentrated force at the supports. Hence (10) and (11) are solved by simply letting
Q = 7P, where 7 is a known coefficient.

Table 7 shows the results of a numerical example in which it is assumed that Q = P. This is
basically a three point loading problem with friction at the supports. The normalized stress
intensity factor is again defined by

k¥(b) = k(b)/{(2PIh)\/(h - b)]. (44)

The table also shows the difference Ak between the stress intensity factors calculated with and
without taking the effect of Q into account (for k*(b) see Table 1).

Table 7. Effect of friction at the supports on the stress
intensity factor in a strip with an edge crack loaded through
a flat rigid stamp. a/A =001, d/h =2, Q=P

(h‘ - b)lk 001 0.1 0.2 0.3 0.4
k g(b) 8570 8049 8135 8761 9998
ko(b)—k*b) 2225 2166 2268 2518 2947
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Table 8. Normalized pressure distribution

under a flat rigid stamp in a strip with an

edge crack of length & - b (Fig. 3). (h—

Wik =01, d=2h, 2a: stamp width, 2P:
total compressive force

p(x){(2P/a)
xla alh=0.1 alh=001 (alh)>0

0.054  0.285 0.318 0.3187
0.162 029 0.322 0.3226
0.267  0.301 0.330 0.3303
0370 0316 0.342 0.3426
0468  0.339 0.360 0.3602
0.561 0.370 0.384 0.3845
0.647 0411 0417 0.4175
0726  0.465 0.463 0.4629
0.79 0541 0.526 0.5259
0.857  0.648 0.618 0.6177
0907  0.809 0.758 0.7558
0.948 1.080 0.998 1.0001
0.977 1.621 1.482 1.4927
0994 3245 2.947 29101

One may estimate the effect of the friction for values of n other than unity by simply
assuming that Ak is. pcoportional to 5. The table indicates that as one would expect the effect of
friction or any axial constraint may be significant in transversely loaded beams and plates.

In the crack-contact problems described in this paper for a fixed value of b/k as a/h tends to
zero the (relative) pressure distribution under the stamp would approach the contact stress
between a stamp and a semi-infinite elastic medium. Table 8 shows the result of an example
indicating this trend. The example is that considered in Fig. 3. The pressure distribution
corresponding to (a/h)->0 shown in Table 8 is the contact stress for a frictionless rigid flat
stamp pressed on an elastic half plane and is given by

p&x) _ 1 a B
2P/a - 'ﬂ"\/[l —(x/a)zl’ j-a P(X) dx = ZP (45)

In a graph giving the pressure distribution such as Fig. 3 the differences shown in Table 8 would
be too small to be distinguishable.

A brief remark regarding the numerical analysis may also be useful. For the internal crack,
depending on the distances of the crack tips to the boundaries, n = 15 in the aigebraic equations
(30) was sufficient to obtain three or four digit accuracy in the stress inteasity factors. However,
for the-odige vrack, particolarly<for-deep cracks, greater number of eguations was needed to
obtain four digit accuracy. To have some idea about the number of equations used in the
solution consider, for example, the results given in Table 1. In order to obtain the four digit
accuracy shown in the tabie the numbers n shown in Table 9 had to be used. For (k - b)/h =0.6
(i.e. for deep cracks) n = 60 gave only a three digit accuracy. The stress intensity factors shown
in the table for crack depth ratios 0.6, 0.7 and 0.8 were obtained by extrapolating the resuits
found from n = 40, n = 50, and n = 60. For this the stress intensity factor was expressed as

k*(n)= A+ B/n* (46)

Table 9. Number of equations n used to compute the values given in Table I,
Extp.: extrapolation from n = 40, 50, 60

B=b 001 o1 02 03 04 05 06 07 08

n
(d=2h)

n
@=apy X B 3 3 4 50 Exte. Extp. Extp.

30 30 30 30 4 45 Extp. Extp. Extp.
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where the constants A, B and a were obtained by using the values found for n = 40, 50 and 60.
The constant A corresponding to n -« is the value shown in the table. Even though, in this
example the same number n was used in both equations given by (30), from the viewpoint of
numerical analysis the stamp is equivalent to an internal crack. This was shown to be the case
numerically and in the subsequent examples the number of equations used in (30) for i = 1 and
i = 2 were taken to be different, n, being less than an,.
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APPENDIX A
The kernels &k, ..., ko

kix, 1) = fo " Bla)da?h + dah +2-26)sin alt - 1) da,

ke, 1) = fo " B(aWa®h? cos alt - x) da,

ky(x, )= ~2 J; “Bla)(1 + ah)e™ - (1 - ah)e*Isin a(t - x)a,

ke, ty=2 L. B(a)ah(e™ ~ e **) cos a(t ~ x) da,

ky(x, 1) = fo ) B(aXe™™'1(1 - at)da’h® - at(4a’h® + dah + 2~ 2e72%4))
+2¢7" (I~ ah + at)ah(e™" ~¢ ")

~alh — tXe™ (1 + ah)~ (1 ~ wh)e )]} sin dx da,
B(a) = (¢** - 4a?h? - 2 + ¢~2o4) !,

kc()" ') = ﬁ hl(yv t)'
b= L B(eX4a’h?+ 4ah +2~2e"2**)at ¢~* sinh ay da,

b= L B(aXat - 1Ma?h® e~ sinh ay da,
hy= - fo B(a)a*hty e™* sinh ay da,
hi= L Bla)ay(at — 1)4ah - 4a2h*~2+ 2" ¢~* sinh ay da,

hs= fo‘ a(h~ 1) e *"NB(a)2A1 + ah) e + Aah ~ 1) e~**]

-2(1+ ah)e=**} sinh ay da,
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he= fa (1- ah +at) e *"[B(aRak(e™™* ~ e**) + 2ah ¢ **]sinh ay da
Q

hy= f " yal(t - h) e[ B(a)2ah(e™ - e~*) ~ 2ah ¢~**] sinh ay da
1]

By = I " ya(l - ah +at) € *(1 - ah) ™ - B(a)(2(1 - ah) ¢
[
-1 + ah)e™"*]} sinh ay da,

hy=— J; ) B(a)8a’h*t e~ cosh ay da,

hy= L. B(aX1- at) e~ *(8a*h? - 8ok + 4 - de~2**) cosh ay da,
A= L " Bla)aiyt e~ (dah? + bah +2 - 267) cosh ay da,
b= L i B(a)a’h*(at ~ 1)y ¢ cosh ay da,

hy= fo i 4a’hle™™ - B(a)e™ —e )Xk - t) ¢4~ cosh ay da,

hoy= f ) 1 - ak+at) e "* (1 ~ ak) e~ + B(a)(ah — 1) e**
(]
+(ak + 1)e**]} cosh ay da,

s = [; 2ay(h ~ t) e ** Y B(a)(1 + ak) e** + (ah ~ 1) e™**] — (1 + ak) e"**} cosh ay da,
he= L. 2athy(l - ah + at) e [ BlaXe ™™ - ¢™)+ ¢ **] cosh ay da.
knly, t)-$ a(n 1)
ay= fo " Blak2ah + | - 207k - %) ¢ cos at da,
&@= L. Bla)e 2 ~ 1~ 20k ~ 6a*h®) ¢~ cos at da,
as= I: Bla)ay(Qah + 1 —e ) ¢* cos at da,
3= L ) Bla)ay(da’h®+2ah + 1~e ) e cos af da,
k(y. 1) =$ bi(y. 1),
b= fo. 2B(a)2ak - a*h?~ | +¢"2**) ¢ sin at da,
by= fo " 2BlaN2ah - 3aPh - 1+ ¢ €™ sin at da,
by= L ) B(a)ayQah ~ 1 +e7***) ¢* sin at da,
by= J;- B(a)ay(da’h®-2ak + 1~ ¢ **)e " sin at da.
ke(y, 1) = 5‘; a(y. 1),
o= L. {Bla)(ak - 1) e** + (1 - 3ah) €]~ (ah ~ 1) e ™} ™’ cos at da,
= jo " B(a)(1+ 3ak)e™ - (1+ ak) e™**] ¢ cos at da,
o= J: {B(a)(1 - 2ah)e™* - e**] + ¢™™*} ay *’ cos at da,

Cy= f B(a)e™* - (1 +2ak) e®*)ay ¢ cos at da.
[]

4
kioly, ) = 2 diy 1),

dy= [- {B(a)(2 - ah) e -2+ 3ah) e™**] - (2 - ah) e **} e sin af da,
°
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dy= I B(al(2-3ah)e™ - 2+ ah) e **) ¢ sin at da,
[}

4= I " (Blake™ - (1+2ak) e =} ay ¢ sin ot da,
9

dy= f. B(a)(Qah - e +e™**) ay ¢~ sin at da.
0
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