
1111. J. SDIitIs S111l1:_ Vol. 15. pp. 9S1-965
Perpmon Pm. Ltd.. 1979 PriIIIed in Oral Brilain

A CRACKED BEAM OR PLATE TRANSVERSELY
LOADED BY A STAMPt

H. F. NIED and F. ERDOGAN

Lehigh University, Bethlehem. PA 18015, U.S.A.

(Received 8 Nolltmbtr 1978; ill rrvi,td form 24 Jallllary 1979; receioed for pllblicatioll 2 ....pril 1979)

AllIenct-ln this paper the problem of an infinite elastic beam or a plate CODtIinin& • crack is considered.
The medium is loaded traJlsvenely through a stamp which may be rigid or elastic. The problem is a coupled
crack-contact problem which cannot be solved by treating the crack and contact problems separately and
by usina a superpositioll technique. FlI'St the Green's func:tioIIs for the aeneral case are obtained. Then the
intepaJ equatiolls for a cracked infinite strip loaded by a frictionless stamp are obtamed. With the question
of fracture in mind, the primary interest in the paper has been in calculatiD, the stress intensity factors. The
results are liven for a rigid flat stamp with sharp edaes and for an elastic curved stulp. The elect of
frictioII at the supports 01\ the stress intensity factors is also studied and a numerical example is Jiven.

I. INTRODUCTION
In this paper we con,ider the problem for a beam or a plate which contains a crack
perpendicular to its boundaries and which is subjected to a symmetric transverse loading. The
specific problem of interest is that of a beam supported at two points and loaded transversely
through a rigid or an elastic stamp (see Fig. 1). The problem differs from the standard cracked
strip problem considered, e.g. in [1-7] in that it is a coupled crack-contact problem in which
the distribution of the transverse loads is not known and is dependent on the geometry of
the crack as weD as that of the stamp. Therefore, the routine superposition technique of
calculating the crack surface tractions from the uncracked strip and using them to solve a
perturbation problem in the cracked strip is not applicable.

In solving the beam problems another point of practical interest is the estimation of the effect
of friction which may exist at the supports. This effect may be taken into consideration in
formulating the problem by simply assuming that on the boundaries the tangential as well as the
normal tractions are prescribed.

The solution of the problem is given for two stamp geometries, namely a rigid ftat-ended
stamp with sharp comers and a curved elastic stamp. Without the support friction and for small
contact area under the stamp, the problem reduces to the three point bending problem for a
beam which is considered in[S].
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Fig. 1. An elastic strip containing a crack which is 10ll4led throulb a stamp.
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2. INTEGRAL EQUATIONS OF THE PROBLEM

Consider the plane elasticity problem for an infinite strip shown in Fig. 2. Let x = 0 be a
plane of symmetry. In addition to the tractions

O',,(x, 0)= - p8(x - xo) - p8(x + .to),

O'Xy(x, 0) =q8(x - .to) - q8(x +xo),

O'yy(x, h)= - P8(x - d) - P8(x + d),

O'Xy(x, h) =Q8(x - d) - Q8(x + d),

let the strip contain an "ed8e dislocation" given by
r

a
ay u(o, y) =/8(y - Yo), 0 < Yo < h, (2)

where U is the x component of the displacement vector. The solution of the problem under the
"external loads" (1) and (2) would provide the necessary Green's functions to express the
intqrat equations of a relatively general crack-contact problem in which there may be any
number of cracks on the x =0 plane and any number of stamps along the y =0 and y =h
pJqcs. SiI".dlc,fo~,oftJle"pwQWmjsJlUitc......tfcmwvd",jn this paperlDOSt of the
details reprdiq the derivation will be omitted. The displacement liekI in the strip may be
expreaed by die follewiBl Fourier intearaIs (see, e... (4,8D

I( 1(+1 ) J'-;; 12 +-2-12 +Olyg, cosh Ol'l SID ax dOl

+_If" A(J3) (I( + 1+ 1J3lx) e-1"1x+~ dJ3,
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Fig. 2. External loads acting on the elastic strip.
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where the functions ft(a), lz(a), g,(a), g2(a) and A(tJ) are unknown. Equations (3) satisfy the
symmetry condition given by

Txy(O, y) =0, 0 < Y< h. (4)

The five unknown functions which appear in (3) can be determined by using the five conditions
given by (1) and (2). Using the stress-displacement relations, from (1H3) we obtain

A(tJ) = ;(1;1e)f3 f e-~,

!J(a) =~a) {-(ah + cosh ah sinh ah)A I - a 2h2A2+ (sinh ah

+ ah cosh ah)A3 - ah sinh ahA4},

fia) =A"

gl(a) =~a) {(ah +cosh ah sinh ah)A1+ sinh2 ah A2- (sinh ah

+ah cosh ah)A 3+ ah sinh ah A4},

gia) =~a) {-sinh2 ah At + [ah - cosh ah sinh ah)A2+ah sinh ahA3

+ [sinh ah - ah cosh ah]A4},

l)(a) =sinh2 ah - a 2h2,

AI =_1 p cos axo+_1-lYoa e-eJll
2p, 1+I( ,

A2 =_1 q sin axo--1-f(1- ayo) e-eyo
2p, I( + 1 '

A 3 =_1 P cos ad - _1_ fa(h - Yo) e-e(.-'"2p, 1+ I( ,

A4 =_1 Q sin ad - _1_ f(l- a(h - Yo)) e-ca(.-yO>
~ 1+1( ,

(5a-e)

(6)

(7a-<1)

where p, is the shear modulus and Ie =3- 4v for plane strain (i.e. for plates) and I( =
(3 - v)/(1 + v) for plane stress (i.e. for beams), v being the Poisson's ratio.

Now, let us assume that the strip contains cracks along a portion L of the x = 0 plane and is
loaded by stamps on the boundaries y I: 0 and y I: h, Mo and At,. correspoading to the
respective contact areas. This means that IT!AX is prescn"becl on L and aenenHY tile displace­
ments u and v are prescribed on Mo and Ai,.. Then, substitutina from (5)-(7) into (3) and using
the appropriate stress-dispiacement relation we could obtain a system of five intepal equations
for the unknown functions f(x), q(x), p(x), P(x) and Q(x). However, in order to simplify the
problem, in this paper it will be assumed that at y =h the tractions P(x) and Q(x) rather than
the displacements u and v are prescribed and the tractions p and q are not independent. That
is, either the stamps acting on y = 0 are frictionless, (i.e. q =0) or the coefticient of friction on
the contact area is constant. Therefore, the problem has only two unknown functions, f(y) and
p(x), with IT,,,, and v being prescribed on L and Mo. respectively. .

To co..plete the formulation of the problem, the contribution of tile elastic stImp bas to be
incorporated into the integral equations. Considering only the curved elastic stamps which are
in "smooth" contact with the strip and assuming that they have relatively Iaqe local radii of
curvature, the local displacements in the stamps in the nejpborbood of the contact area may be
approximated by the standard half plane solution(9). Referring to, for example(8), under the
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tractions p(x) and q(x), the derivative of the normal displacement in the stamp may be
expressed as

a ( 0) K, -1 () 1K, +1 f p(xo)..I_-v, ~-. =---q x ----- \lAO.ax 4p., 1r 4p., Mo Xo - x
(8)

where the subscript s refers to the q_tities in the stamp. The integral equation giving the
contact pressure p may then be obtained from

a . dax [v(x, +0)- v,(x, -0» == Vex) = dx voCx), (9)

where IJe(x) detcribes the pro6Ie of the stamp.
ExpressiDc DOW 0'.(0, y)aad (al8Z)v(x, +0) in terms of the uaDoWll functions p, q, and /

and ulinl (8) and (9), after somewhat leDlthY but straightforward analysis. we obtain

-1r!Jtq(x) + ( ..eQ!.dt + Ih. ( [lel(x, t)p(t) - leix, t)q(t)] dtJAIor-x JMo

+Ih. fAt,. [k,(x, I)P(I) - k..{x, 1)Q(t») dt +113f f(t) [ (x:::,
+Ie,(x, t)] dt =1r/J3 Vex), x e Mo, (10)

[ f(l) [, ~ y + ~'(y, t) +~(y, I)] dt + ~:1fMt ([Ie,'(y, I) + Ie,(y, t)Jp(t)

+ [Ie,'(y, t) + lea(y, t)Jq(t)} dl +~:1 fAt,. {[Ie,'(y, t) +~y, 1)]P(t)

K+l
+[lefoty,I)+k..,{y, 1)]Q(t)}dt =4;"'<T.u(O,y), y E L, (11)

where

== (I( - 1)e, - (1(, - l)M
{31 (K + Op., +(K" + I)p.'

_ 4,..."
113 - (K + I)p., +(K, +1)p.'

== (I( +I)"..
1J'l (K +1)p., +(K, +1)p.'

(12)

the kernels kit •.. , kID are bounded in their respective closed intervals and are liven in
Appeadix A and #el(y, t), (i. 6, ... ,10) represents the part of die i.-I which: becomes
un-.aded as y and t go to an end point y • 0 or y =- II u-ltaneouaJy. Separadon of these
si""" keraIIs is easeAtial for an accurate~t of the ... cracks. The __Is k and k'
are aepIIated throqtl th:e,asympCoflic analysis of tire illfiaite itItepaIs givina the sum of the two.
For ex_pie, in k.': +let tile I1nt term in these intep'als reads as

H( ) (. ~+4ah-e-w -CIt • h d
I y, t =Jo ew -4a21?:""2+e;"Wi tae sm. ay a. (13)

By adding and subtracting the asymptotic value of the intepand under the integral sign and
evaluating the asymptotic i...., (ll) may be expressed as follows:

(14)
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After evaluating all such terms and combining we obtain

9SS

~'( t) I + 6y 4y2 I 6(h - y)
y, =- t + Y (t + y)2 - (t + y)3 - t - (2h - y) - [t - (2h - y)f

4(h - y)2 2 4h + y - t 12h(h - t) + 4hy 24hy(h - t)
[t-(2h-y)]3 2h-t+y+(2h-t+y)2 (2h-t+y)3 +(2h-t+y)'" (15)

Y y(y2_ t2
)

k,'(y, t)= -?+"?+ (y2+ t2)2, (16)

• 2t 2ty2
ks (y, t)= -?+"?+ (y2 +t 2)2' (17)

, _ -(h - y) (h - y)[(h - y)2_ t 2]
k9 (y,t)-(h_y)2+ t 2+ [(h_y)2+ t2]2 , (18)

, 2t 2(h - y)2t
kll/,y, t) =(h _ y)2 + t2- [(h _ y)2 +t2f (19)

In deriving the integral eqns (10) and (II) and the expressions for the kernels given in
Appendix A, the following symmetry conditions have been used: The contact areas Mo and Mit
are symmetric with respect to x =0 plane, p(x), P(x) and vO<x) are even functions of x, and
q(x) and Q(x) are odd functions of x. The static equilibrium of the strip requires that

1: p(x) dx =1: P(x) dx.
/tIo /tI.

(20)

Also, referring to the definition of the density function I(t) given by (2), it is clear that, for
example, for an imbedded crack along (x =0, 0< b < y < c < h) I must satisfy the following
single-valuedness condition:

f I(t)dt ... O. (21)

The kernels kit . .. , kiD which appear in the integral eqns (10) and (11) are technically bounded in
the respective closed domains of definition of their aquments and hence may be evaluated
numerically without any difliculty. In this problem a Gauss-Legendre quadrature formula is
used to evaluate the related infinite integrals. However, since the integrands have a siqularity
at a'" 0, considered individually most of these integrals are diver&ent. Expanding the in­
tegrands around a'" 0, the divergent part of the integrals can be separated. By using the
equilibrium condition (20), it can then be shown that the sum of the divergent parts of the
kernels is zero. Even though somewhat lengthy, this procedure is Decessary for the accurate
evaluation of the kernels.

3. SOLUTION FOR A RIGID FLAT STAMP

Let the beam or the plate have frictionless simple supports at x= :;: d, y = h and be loaded
through a frictionless rigid flat stamp of width 2a having sharp comers at x... :;: a. Assume that a
through crack is located on x =0, b < y < c. For this problem the integral eqns (10) and (11)
are valid with

55 Vol. IS. No. 12-0

q(x) =o. Q(x) = 0, P(x) = P8(x - d) + P8(x + d), Vex) =0;

L =(b, c), Mo = (-a, a), uu(O. y) =0, b < y < c;

-~~2=1, ~3-1+IC' (22)
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where P is the load at the supports x= '+ d per unit thickness. After normalizing the intervals
(b. c) and (-a. a) through the transformations

) c-b. c+b t-_ C -
2

b "2+ c +2 b, (b<t<c).•X=4r.. I=ash (-4<I<a. '=-2-r2+2' ~ .

(23)

the siDplar intqral eqns (0) and (11) may be solved numerically by using the Gauss­
Cheby.v intepadon formulas{10]. Noon. tIIat the index of both equations is +1. the solution
may be expressed as

(24)

(25)

~so, from (10), (11) and (22) observing that

1 [k,' + k,)P(t) dt ==ifll [k,'(x, d) + t,'(x, -d)+ Ic,(x, d) + ks(x, -d»p(/) dt. (21)
AI. -II

the .earaI equations (10) and (II) may be expressed as follows:

J
I 2

-1~ k,,(r. s)/J(s)ds = Q. i := 1. 2. -1 < ,.< I. (28)

(298. b)

In (28) since aD variables are de6ned in the same mtcrval (-1. I), the subscripts in rands have
been deleted. The intqral equations must be solved under the conditions

LI

/l(S)dS =I, J~/:z(I)ds=0.

The system of sinpJar iatepal equations (28) are solved Dumerically by replacinl (28) and (29)
by[10-:12]

2 "'5' '5' it(r",. St).F/(St) Wt = 8I(r",), i := 1,2; m = 1, ... ,11- 1. (30)
f.:1 ~I

(318, b)

where

Sj; := cos (:=~ 1r). k == 1•.... ,11, rift == cos (;:~i 1r). m == 1•...• 11- 1.

Equations (30) and (31) give unknowns fi(s.). j == 1. 2;t = t•...• n.
With the fracture of the beam or plate in mind, in the problems considered in this paper., the
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main interest is the evaluation of the stress intensity factors which are defined by

k(b) =lim [2(b - y)]I/2O'u(O, y) =lim [2(y - b)]l/2 t4+11: f(y),
y~b y~b K

k(c) = lim [2(y - C)]112 O'u(O, y)= -lim [2(c - y)]l/2 t4+11: f(y).
,~c ,~C K

9S7

(33a, b)

Referring to (25), after solving the integral equations k(b) and k(c) may be evaluated from

k(b) =(2P/a) v[(c - b)/2] Fi- t),

k(c)= - (2P/a) v[(c - b)/2] Fit). (34a, b)

When c == h, the crack becomes an edge crack. In this case the singular behavior of the
solution was discussed in detail in [4]. Here it is sufficient to mention that the generalized
Cauchy kemel found in this paper is identical to that of [4]. The numerical solution is carried
out by letting c == h and apin using eqns (30)-(32). Needless to say, in this case the condition
(29b) and hence the eqn (3tb) is not valid. Also, at the end point y =c =h the power of
singularity of the density function f(y) is zero (rather than -0/2», that is /(h) is finite. Thus,
/(y) may still be defined by (25) and (30)-(32) may still be used to solve the problem provided
(3tb) is replaced by

Fit)=O. (35)

The numerical results found for a cracked beam or plate loaded by a ftat-ended riIid stamp
are shown in Tables 1-5. The tables give the normalized stress intensity facton defined by

k* = (2P/It~(1t _ b) for the edge crack,

leo == (2P/It)V~C _ b)/2] for the intemal crack.

Table 1 shows the edge crack results for the stamp width alit == 0.01 which essentially
corresponds to the three point loading problem. The table also shows the results given in[S]
obtained for the three point loading problem by the method of boundary collocation. It may be
seen that the agreement is quite good.

As the width of the rigid stamp 2a is increased, physically it would be expected that because
of the "bendina" of the strip the contact pressure at x =0, y =0 would decrease and eventually
the surfaces would separate. This may be observed from Tables 2 and 3 and FilS. 3 and 4.
Figures 3 and 4 show the distribution of the normalized pressure p(x)/(2P/a). Both fiJures refer

Table I. Stress intellsity factor in a strip with an
edae crack and loaded by a riIid lIat IlImp. alit ..

0.01. k·(b): present results. f·(b): Ref.[51

d/It .. 2 d/1t=4
(It - b)!It k-cb) f·(b) t-eb) f·(b)

0.01 6.345 60434 13.00 13.09
0.10 5.883 5.910 12.17 12.19
0.20 5.867 5.882 12.20 12.22
0.30 6.243 6.255 12.99 13.01
0.40 7.041 7.042 14.61 lUO
0.50 8.448 U67 17.~ 11.46
0.60 10.92 10.96 22.42 22.45
0.70 15.77 32.12
0.80 27.40 55.51
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Table 2. Effect of the stamp width 2a on the stress intensity factor in a strip with
an edge crack. d/h = 2. (h - b)/h = 0.1

alh 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35
k*(b) 5.883 5.876 5.856 5.819 5.762 5.681 5.570 separal.

Table 4. Stress intensity factors in a
strip with a central crack. alh .. 0.01,

dlh =4, c +b =II, ko =k/[(2P1h)
v((c - b)/2»)

(c-b)/h fco(b)
Table 3. Stress intensity factor vs. the
crack lenph for an edae crack. aIh .. 0.2.

dlh .. 4.0

(h - b)/h 0.01 0.10 0.20
k*(b) 12.84 12.03 separation

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95

-0.28763
-0.82050
-1.3540
-1.8975
-2.4714
-3.1177
-3.9294
-5.1552
-7.8157

-11.6675

fco(c)

0.78919
1.3365
1.8954
2.4780
3.1095
3.840S
4.7822
6.2281
9.3547

13.7382

to the case of edge crack. Figure 3 gives the pressure distribution for a fixed crack length and
for selected values of the stamp width 2a. It is seen that as ath increases the pressure in the
mid portion of the contact area decreases, and at approximately alh =0.315, p(O) becomes zero.
Upon further inereaaiDs Q/h the analysis gives nep&ive pressure around x =O. Since this is not
possible separation would have to take place aIolII the contact area. Similar results may be
observed in Fig. 4 where the pressure distribution for a fixed stamp width and variable crack
length is given. Here the separation begins approximately at (h - b)th =0.15. These results
indicate that for a given crack leqth and stamp widths greater than a certain critical value or
for a given stamp width and crack lengths greater than a certain value the solution as outlined in
this paper would not be applicable. This is a typical "receding contact" problem in which the
contact area is not known. However, our unpublisbed results in connection with the problem
described in[13]t shows that in this case the contact area would be confined near the ends of
the stamp and a very good approximation to the solution may be obtained from eqn (Il) by
replacing the contact pressure p by two concentrated loads n(x - a) and P3(x + a).

The values of the stress intensity factor correspondiDg to rigs. 3 and 4 are given in Tables 2
and 3.

The reaulls. for..aA~intama1.GI8Gk (.G<.b <.y< c < Ia.),ue snown' in iabJes 4·and 5. Table 4
shows the stress intensity factor ratio to for a symmetrically located crack, i.e. for (c +b)t2 =
h/2. Here the crack tip y =b is in the compression region, hence k(b) < O. Of course,
considered separately these results are meaningless. However, the results can be used if the
strip is also under a sufficiently large axial load so that in the combined bending-membrane

Table 5. Stress intensity fac:;tors for an eccentric­
ally local. cract. alit .. 0.01, c +b .. 3h12, ko=

k/(2P!1t)v'«c - b)l2l)

dlh =2 dlh =4
(e - b)/It ~b) fco(c) fco(b) /cJ.c)

0.05
0.10
0.20
0.30
0.40

2.6122 2.8784 5.4749
2.5167 3.0562 5.2663
2.3916 3.5429 4.9947
2.4018 4.3-492 4.9681
2.6470 6.1001 5.4362

6.0423
6.4155
7.4265
9.0895

12.6981

me plane problem for an elastic strip supported by two elastic quarter planes and subjected to transverse loads. In
this problem, upon separation, the contact area recedes towards the ends of the stamp and the solution becomes
indistinlUishable from the concentrated load solution.
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Fig. 3. Normalized pressure distribution UDder a flat riaid stamp with sharp edaes in a strip with an ed,e
crack of lenath II - b. (II - b)/II .. OJ. support spacina"1d .. 4h, stamp width. 211, total compressive

force =2P.
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~
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Fia. 4. Normalized pressure distribution uDder a ht riPlltaIIlp with sharp edan in a strip with an edae
crack. alII .. 0.2. dill .. 4, total force 2P.
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solution k(b) becomes positive or zero. Then the results given in Table 4 would be quite useful.
Note that in this problem Ik(b)l;c /k(e)', whereas under pure bending one has k(b)= - k(e).
Table 5 shows some sample results for an e!=centrically located crack.

4. ELASTIC STAMP

Let the strip apia be supported at x= +: d, y =h and be loaded tbrouah a curved elastic
stamp with a local radius of curvature R. If R is large in comparison with the contact length 2a,
then the input function V appearing in (10) may be expressed by

(36)

The system of sinaular inlepal equation are again valid with

q(x) =0, Q(x) =0, P(x) =P8(x - d) + P8(x + d);

L=(b,e), Mo=(-a, a), O'x.r(O,y)=O, b<y<e;

I.e I(t) dt =0, L: pet) dt =2P.

Usm, the transformation (23) and defining

~. I (s ) MaI(Rt ) =IJS~\,7iliifJi) " , Z\ V

the integral equations can be expressed in the foUowina form

(37)

(38)

subject to the conditions

II R
I,(S) ds =Q":l2P =A,

-I ~3a
f. lis) ds • 0. (4Oa, b)

In this problem the contact wicItb 2a is uabown. TIle integral equations (39) are solved by
asSUllliq that a is kaown. After deter . hi ,.(1) for a liven G, the correspondiq load P is
theJt.determiIIed·from· f6). 'I'he numerical solution is obtained by letting

(4Ia, b)

and usm, the Gauss-Chebyshev integration formulas (10). The stress intensity factors are then
obtained from

a a
k(b) =R Gi-1)v[(e - b)/2), k(e)= - R Gi1)v[(e - b)/2). (42a, b)

The calculated results obtaiaed for the Ioading by a curved stamp are summarized in Table
6. The results are given for three values offl2, namely IJ", namely IJ" =I, IJ" =0.5 and IJ" =5 x 10-' which
correspond respectively to a rigid stamp, a stamp having the same elastic constants as that of
the strip, and a stamp with a shear modulus which is much lower than that of the strip. The
difference in these three sets of results lies IIIlIinJy in the value of A as defined by (4&). Note
that in terms of Aand k* the actual stress intensity factor is given as

2

k(b) =~/J"'*(b)A v(h - b). (43)
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Table 6. Stress intensity factors in an
infinite strip with an • crack IoIUled
through an elastic curved stamp. dill ....

(II - b)/II tJ/II k*(b) 10" Aa2/11 2

fl2 .. 1.0

0.1 0.01 12.17 1.567
0.1 0.03 12.17 13.87
0.1 O.OS 12.17 37.25
0.1 0.10 12.16 129.2
0.1 O.1S 12.14 238.3
O.S 0.01 17.44 1.549
O.S 0.03 17.44 12.54
O.S O.OS 17.44 29.02
0.7 0.01 32.11 1.469

fl2 .. O.S

0.1 0.01 f2.17 1.569
0.1 0.03 12.17 14.00
0.1 0.10 12.16 1..1.8
0.1 0.20 12.12 440.3
O.S 0.03 17.44 13.29
O.s O.OS 17.44 33.38
O.S 0.10 17."2 92.81
O.S 0.20 17.34 17S.9
0.7 0.03 32.11 10.80
0.7 O.OS 32.09 21.27
0.7 0.10 32.03 37.07

fl2 .. S.O x 10-'

0.1 0.10 12.16 151.1
0.1 0.50 11.88 3,926
0.1 1.0 11.27 lS,690
O.S 0.10 17.42 151.1
O.S 0.50 16.94 3,923
O.S 1.0 16.0S 1S,660

S. THE EFFECT OF FRICTION AT THE SUPPORTS

If the beam or the plate is loaded as described in FII. 1 and if there is friction at the
supports, then the axial load Q would not be zero and may teod to iDcIeue the stress iatensity
factor. Or, ill pnenl, the strip may be subjected to axial surface loads Q not DOCOIsarily at the
supports. Assn'" that P and Q are known, the intepal equatiolls (10) and (11) can be sotved
and the effect of Q can be evaluated. As an example, in tbis paper it is assumed that Q is a
known concentrated force at the supports. Hence (10) apd (11) are solved by simply 1ettina
Q = ."p, where ." is a kDown coe8icient.

Table 7 shows the results of a numerical example in which it is assumed that Q= P. This is
basically a three point loadina problem with friction at the supports. 1be nonnalized stress
intensity factor is apin defined by

k~b) = k(b)/[(2P/hh/(h - b»). (44)

The table also shows the difference Ak between the stress intensity factors calculated with and
without taking the effect of Q into account (for k*(b) see Table 1).

Table 7. Effect of friction at the supports oa tile atreu
intensity factor in a strip with III • c:racIt loaded....

a ftat riIid stamp. tJ/II .. 0.01, dI" .. 2. Q.. P

(II - b)/II 0.01 0.1 0.2 0.3 0."
k~b) 8.S70 8.049 8.13S 8.761 9.998
kO<b)- k*(b) 2.225 2.166 2.268 2.518 2.947
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Table 8. Normalized pressure distribution
under a flat rigid stamp in a strip with an
edge crack of length h - b (Fig. 3). (h-
b)/h =0.1, d =2h. 2a: stamp width, 2P:

total compressive force

p(x)/(2Pfa)
x/a a/h =0.1 a/h =0.01 (a/h) ...O

0.054 0.285 0.318 0.3187
0.162 0.290 0.322 0.3226
0.267 0.301 0.330 0.3303
0.370 0.316 0.342 0.3426
0.468 0.339 0.360 0.3602
0.561 0.370 0.384 0.3845
0.647 0.411 0.417 0.4175
0.726 0.465 0.463 0.4629
0.796 0.541 0.526 0.5259
0.857 0.648 0.618 0.6177
0.907 0.809 0.758 0.7558
0.948 1.080 0.998 1.0001
o.m 1.621 1.482 1.4927
0.994 3.245 2.947 2.9101

One may estimate the effect of the friction for values of ." other than unity by simply
alliluai.. .tJaat..,Ak is.pcG(IIOI1ioIIal to .".lbetaWe,j~that as-one wouWexpect the eleet of
friction or any axial constraint may be sipificant in transversely loaded beams and plates.

In the crack-contact problems described in this paper for a fixed value of ",11 as alII tends to
zero the (relative) pressure distribution under the stamp would approach the contact stress
between a stamp and a semi-infinite elastic medium. Table 8 shows the result of an example
indicatiq this trend. The example is that considered in Fig. 3. The pressure distribution
correspondina to (allI)-+O shown in Table 8 is the contact stress for a frictionless rigid flat
stamp pressed on an elastic half plane and is given by

p(x) _ 1
2Pla - 1/'y[l- (xfa)2]' L: p(x) dx =2P. (45)

In a graph giviDl the pressure distribution such as Fig. 3 the differences shown in Table 8 would
be too small to be distiJIpitbabIe.

A brilf remark rep .... the numerical analysis may also be useful. For the internal crack,
dependiq on the distances of th.= crack tips to the boundIrios, II • is ill die~ equations
(30) was sulIcient to obtain three or four diait accuracy in the stress intenlily faCtors. However,
for ....·•• ·VftIek, ~<for·deep cracks, greater number of 8qtiIIioas was needod to
obtain feur diak accuracy. To have some idea about the number of equtions used in the
solution consider, for example, the results given in Table 1. In order to obtain the four dilit
accuracy shown in the tabte the numbers II shown in Table 9 had to he used. For (11- b)/1t :ii!: 0.6
(i.e. for deep cracks) II = 60 gave only a three digit accuracy. The stress intensity factors shown
in the table for crack depth ratios 0.6, 0.7 and 0.8 were obtained by extnpolatina the results
found from II =40, II =50, and n =60. For this the stress intensity factor was expressed as

k*(n) = A + Bin" (46)

Table 9. Number of equations n used to compute the values given in Table I.
Extp.: extrapolation from n =40. 50. 60

h-b
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-h-

n
30 30 30 30 40 45 Extp. Extp. Extp.

(d=2h)
n

30 35 35 35 40 50 Extp. Extp. Extp.
(d =4h)
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where the constants A, B and a were obtained by using the values found for n = 40, 50 and 60.
The constant A corresponding to "-+ 00 is the value shown in the table. Even though, in this
example the same number " was used in both equations given by (~), from the viewpoint of
numerical analysis the stamp is equivalent to an internal crack. This was shown to be the case
numerically and in the subsequent examples the number of equations used in (30) for i = I and
i =2 were taken to be ditlerent, ". being less than "2.
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APPENDIX A
The kernels k...... , k,o

k,(x. t) .. L- B(a)(4a%IIZ+4cr1l + 2- 2e-ZoII ) sin a(t - x) da,

k,(x. t) .. L- B(a)4cr2112cos a(t - x) da,

k3(x, t) .. -2f B(a)((1 +all)e·~ - (1- a")e-·~)sina(t - x)da,

~x, t) .. 2I: B(a)crll(e- - e--) cos a(t - x)da,

k,(x, t) =I: B(a){e--((1- at)4cr2h2- af(4a2h2+4crll +2- 2e-ZoII )]

+2e-alh-ll((I'_ 1111 +at )crll(e·~ - e-.~)

-a(ii :";l<e·~(1 +all)-(1-all)e--»}sma.x da,

B(a)" (e:z.~ _4a2112 _ 2+e-ZoII )-I,

t.<y, t) ..~ 1I,(y, t),

II, .. I: B(a)(4a2112+ 4a1l + 2- 2e-ZoII)crt e-- siah a, dcr,

112 " L- B(a)(at - I)4crZh2e-- sinh ay da,

h3- - L- B(a)4a4112t.l' e-·' sinh ay da,

II." J: B(a)ay(at -I)(4ah -4a2112 -2+2e-ZoII)e- _ ay dcr,

h5 " ra(lI - t)e-(~-'){B(a)(2(1 + all)e- +2(all -l)e-d ]

- 2(1 +all) e--} sinh ay da,
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Itt .. L~ (1- all + at)e-o(.-'I[B(a)2all(e-o• _eri )+ 2all e-rilsinh ay da

117 " L~ ya 2(t -II) e-o(HI[B(a)2all(eo• - c-o
.) - 2all e-o

.] sinh ay da

II...rya(l- all +at) c-O (.-'I{2(I- all) c-o• - B(a)[2(1- all) co.

- 2(1 + all) c-o·U sinh ay da.

",= - L' B(a)8aJIt2t c-o
' cosh a, da.

11,.-rB(ar)(l-at)c-"'(8a2112 -8cdI +4-4e-W )cosh a, da.

11 11 - L- B(a)a2,t e-"(4a2112 +4a1t +2- 2c-W
) cosh a, da.

11 12 " rB(a)4a)II~at -I)y e-" cosh a, da.

II,) - L~ 4a2I1[e-'" - B(a)(eo• - c-eII)J(II- t) e-o(.-tl cosh a, da,

It,. -L- 4(1 -all +at) e-o (.-Il{(I_ all) e-ell +B(a)(all- I) c'"

+(all + I)e-"']} cosh ay da,

II" - L- 2a2,(11 - t) e-...·-·'{B(a)((1 +all)ed +(alt - I) e-"') -(I +aII)e-"'} cosh a, da.

II" - 1:2«211,(1- all +at) e-O(·-'~B(a)(e-ell-~)+e-"'] cosh a,/ da.

•
k71" t) - +11,(,. t)

4,- L- B(ar}(2«11 + 1-2a2t2-e-W )eO
' cos at dar.

42= L~ B(a)(e-2eIo-1-2ak-6a21t:!je-o'cosatda.

a)= f: B(a)a,/(2aIl+ l-e-2<l·)e"' cos at da.

a. = L~ B(a)a,(4a21t2 +2all + l-c-2eIo)c-o, cos at da.

•
ka(,/. t) ...+b,(,. I),

bl '" L-2B(a)(2ak - a 21t 2
- I+c-w ) co, sin at da.

~ = L- 2B(a)(2a11 - 3aW - I +c-20·) e-o
, sin at da.

b) '" L- B(a)a,(2aIl-! +e-w )Il"' sin at da.

b. '" L- B(a)a,/(4e2112 - 2all + 1- c-w )e-O
, sin at da.

•t.<,. I) '"+c,(Y. t).

CI .. L~ {B(a)(a11 - I) eell +(1- 3a11) e-"') - (all- I) e-d }eO' cos at da.

C2" L~ B(a)(1 + 3all)eell -(I +alt)c-d ) c-O' cos at da.

C) .. L- {B(a)((1- 2a11) e-'" - ed ) +e-"} a, co, cos at da.

C. '" L- B(a)(e-d -(I +2all)cd ]ay e-o
, cos at da.

•
klfJ.,. t) ..+d,(y. t).

d...r{B(a)(2 - all)ed -(2+ 3alt)e-o·]-(2 - alt) e-d }eO' sin at da.
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d2 =L- B(a)[(2- 3all)e'" -(2+ ai)e-'"'] e-·' sin at da.

d] = L'~ {B(a)(e.... - (l +2all) e-.... ]- e-"} a1 e·' sin at da.

~= [*' B(a)(2alt-l)e"+e-"')aye-a 'sinatda.
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